
Knowledge Acquisition, Validation, and

Maintenance in a Planning System for Automated

Image Processing

Steve A. Chien
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, M/S 525-3660, Pasadena, CA 91109-8099
steve.chien@jpl.nasa.gov

September 25, 1996

Abstract

A key obstacle hampering �elding of AI planning applications is the considerable
expense of developing, verifying, updating, and maintaining the planning knowledge
base (KB). Planning systems must be able to compare favorably in terms of software
lifecycle costs to other means of automation such as scripts or rule-based expert sys-
tems. Consequently, in order to �eld real systems, planning practitioners must be able
to provide: 1. tools to allow domain experts to create and debug their own plan-
ning knowledge bases; 2. tools for software veri�cation, validation, and testing; and
3. tools to facilitate updates and maintenance of the planning knowledge base. This
paper begins by describing a planning application of automated image processing and
our overall approach to knowledge acquisition for this application. This paper then de-
scribes two types of tools for planning knowledge base development: static KB analysis
techniques to detect certain classes of syntactic errors in a planning knowledge base;
and completion analysis techniques, to interactively debug the planning knowledge
base. We describe these knowledge development tools and describe empirical results
documenting the usefulness of these tools.

1 Introduction

A key bottleneck in applying AI planning techniques to a real-world problem is the amount
of e�ort required to construct, debug, verify, and update (maintain) the planning knowledge
base. In particular, planning systems must be able to compare favorably in terms of software
lifecycle costs to other means of automation such as scripts or rule-based expert systems. An
important component to reducing such costs is to provide a good environment for developing
planning knowledge bases. Despite this situation, relatively little e�ort has been devoted
to developing an integrated set of tools to facilitate constructing, debugging, verifying, and
updating specialized knowledge structures used by planning systems.

1

While considerable research has focused on knowledge acquisition systems for rule-based
expert systems (Davis, 1979) , and object-oriented/inheritance knowledge bases with proce-
dures and methods (Gil and Tallis, 1995), little work has focused on knowledge acquisition for
specialized planning representations. Notable exceptions to this statement are (DesJardins,
1994) which uses inductive learning capabilities and a simulator to re�ne planning operators
and (Wang 1995) which uses expert traces to learn and a simulator to re�ne planning opera-
tors. However, in many cases a simulation capability is not available. In these situations the
user needs assistance in causally tracing errors and debugging from a single example. This
assistance is sorely needed to enable domain experts to write and debug domain theories
without relying on AI people. Furthermore, planning knowledge base maintenance is often
overlooked. Such tools are also invaluable in tracking smaller bugs, verifying KB coverage 1,
and updating the KB as the domain changes. While these tools can draw much from causal
tracking techniques used in rule-based systems (Davis, 1979), there are several aspects of
planning systems which di�erentiate them from rule-based systems - their specialized rep-
resentations and their temporal reasoning capabilities. Two specialized representations for
planning are prevalent - task reduction rules and planning operators. These representa-
tions as well as the most common constraints (ordering and codesignation constraints) have
evolved so that specialized reasoning algorithms must be adapted to support debugging.

Many types of knowledge encoding errors can occur: incorrectly de�ned preconditions,
incorrectly de�ned e�ects, and incorrect variable speci�cations. Invariably the end result is
a mismatch between the planners model of the legality of a plan and the model dictated by
the domain (or domain expert). Thus, the end symptoms of a knowledge base error can be
broadly classi�ed into two categories.

Incorrect Plan Generation: This occurs when the planner is presented a problem and
generates a plan which does not achieve the goals in the current problem context. In our
experience, the current problem and faulty solution can focus attention in debugging the
aw in the knowledge base. By using the faulty plan to direct the debugging process, the
user can often focus on the incorrect link in the plan (faulty protection or achievement) -
allowing for rapid debugging.

Failure to Generate a Plan: This occurs when the planner is presented with a solvable
problem, but the planner is unable to �nd a solution. In our experience this type of failure
is far more di�cult to debug. This is because the user does not have a particular plan
to use to focus the debugging process. Thus, often a user would manually write down a
valid plan based on their mental model of the domain, and then trace through the steps
of the plan to verify that the plan could be constructed. Because our experience has been
that detecting and debugging failure-to-generate-a-plan cases has been more di�cult, our
work focuses on: 1. verifying that a domain theory can solve all solvable problems; and 2.
facilitating debugging of cases where the domain theory does not allow solution of a problem
deemed solvable by the domain expert.

This paper describes two types of tools developed to assist in developing planning knowl-
edge bases - static analysis tools and completion analysis tools. Static analysis tools analyze

1For work in verifying rule-based systems - see (O'Keefe and O'Leary, 1993). For work on rule base
re�nement using training examples (the analogue of a simulator for planning KB re�nement) see (Ginsberg
et. al., 1988).

the domain knowledge rules and operators to see if certain goals can or cannot be inferred.
However, because of computational tractability issues, these checks must be limited. Static
analysis tools are useful in detecting situations in which a faulty knowledge base causes a
top-level goal or operator precondition to be unachievable - frequently due to omission of an
operator e�ect or a typographical error.

Completion analysis tools operate at planning time and allow the planner to complete
plans which can achieve all but a few focused subgoals or top-level goals. Completion analysis
tools are useful in cases where a faulty knowledge base does not allow a plan to be constructed
for a problem that the domain expert believes is solvable. In the case where the completion
analysis tool allows a plan to be formed by assuming goals true, the domain expert can then
be focused on these goals as preventing the plan from being generated.

The static analysis and completion analysis tools have been developed in response to
our experiences in developing and re�ning the knowledge base for the Multimission VICAR
Planner (MVP) (Chien, 1994a, 1994b) system, which automatically generates VICAR im-
age processing scripts from speci�cations of image processing goals. The MVP system was
initially used in December 1993, and has been in routine use since May 1994. The tools de-
scribed in this paper were driven by our considerable e�orts in knowledge base development,
debugging, and updates to the modest sized knowledge base for MVP.

The remainder of this paper is organized as follows. Section 2 outlines the two plan-
ning representations we support: task reduction rules and operators. Section 2 also briey
describes how these representations are used in planning. Section 3 describes static anal-
ysis rules for assisting in planning KB veri�cation and development. Section 4 describes
completion analysis rules for assisting in planning KB development.

2 VICAR Image Processing

We describe the static and completion analysis tools within the context of the Multimission
VICAR Planner system, a �elded AI planning system which automates certain types of
image processing 2 (Lavoie et. al., 1989). MVP uses both task reduction and operator-based
methods in planning. However, the two paradigms are separate, in that MVP �rst performs
task reduction (also called hierarchical task network or HTN planning) and then performs
operator-based planning. All of the task reduction occurs at the higher conceptual level and
the operator-based methods at the lower level3. Consequently, MVP uses two main types of
knowledge to construct image processing plans (scripts):

� decomposition rules - to specify how problems are to be decomposed into lower level
subproblems; and

2We only briey describe the MVP application due to space constraints. For further information on
this application area, MVP architecture, and knowledge representation see (Chien, 1994a, 1994b, Chien and
Mortensen, 1996).

3MVP �rst uses task reduction (Lansky, 1993) planning techniques to perform high level strategic classi-
�cation and decomposition of the problem then uses traditional operator-based (Pemberthy and Weld, 1992)
planning paradigms to plan at the lower level

� operators - to specify how VICAR programs can be used to achieve lower level image
processing goals (produced by 1 above). These also specify how VICAR programs
interact.

These two types of knowledge structures are described in further detail below.
A key aspect of MVP's integration of task reduction and operator-based planning is that

�rst task reduction is performed, then operator-based planning. Because of the order in
which these are performed, these two types of knowledge can be checked separately.4

2.1 Task Reduction Planning in MVP

MVP uses a task reduction approach to planning. In a task reduction approach, reduction
rules dictate how in plan-space planning, one plan can be legally transformed into another
plan. The planner then searches the plan space de�ned by these reductions. Syntactically,
a task reduction rule is of the form:

LHS RHS
GI = initial goal set/actions GR= reduced goal set/actions
C0 = constraints) C1 = constraints
C2 = context N = notes on decomposition

This rule states that a set of goals or actions GI can be reduced to a new set of goals or
actions GR if the set of constraints C0 is satis�ed in the current plan and the context C2 is
satis�ed in the current plan provided the additional constraints C1 are added to the plan.
C0 and C1 are constraint forms which specify conjuncts of constraints, each of which may
be a codesignation constraint on variables appearing in the plan, an ordering constraint on
actions or goal achievements in the plan, a not-present constraint (which is satis�ed only if
the activity or goal speci�ed does not appear in the plan and never appeared in the derivation
of the plan), a present constraint (which is satis�ed only if the activity or goal speci�ed did
appear in the plan or derivation of the plan), or a protection constraint (which speci�es that
a goal or set of goals cannot be invalidated during a speci�ed temporal interval. Skeletal
planning (Iwasaki and Friedland, 1985) is a technique in which a problem is identi�ed as
one of a general class of problem. This classi�cation is then used to choose a particular
solution method. Skeletal planning in MVP is implemented in by encoding decomposition
rules which allow for classi�cation and initial decomposition of a set of goals corresponding
to a VICAR problem class. The LHS of a skeletal decomposition rule in MVP corresponds
to a set of conditions specifying a problem class, and the RHS speci�es an initial problem
decomposition for that problem class.

MVP also uses decomposition rules to implement hierarchical planning. Hierarchical
planning (Ste�k, 1981) is an approach to planning where abstract goals or procedures are
incrementally re�ned into more and more speci�c goals or procedures as dictated by goal
or procedure decompositions. MVP uses this approach of hierarchical decomposition to
re�ne the initial skeletal plan into a more speci�c plan specialized based on the speci�c

4A more recently developed planner (Chien et al, in preparation, Chien et al, 1996) completely integrates
these two planning paradigms. While natural extensions of static and completion analysis to this integrated
planning approach exist, we have not as of yet explored such possibilities.

current goals and situation. This allows the overall problem decomposition to be inuenced
by factors such as the presence or absence of certain image calibration �les or the type of
instrument and spacecraft used to record the image. For example, geometric correction uses a
model of the target object to correct for variable distance from the instrument to the target.
For VOYAGER images, geometric correction is performed as part of the local correction
process, as geometric distortion is signi�cant enough to require immediate correction before
other image processing steps can be performed. However, for GALILEO images, geometric
correction is postponed until the registration step, where it can be performed more e�ciently.

This decomposition-based approach to skeletal and hierarchical planning in MVP has sev-
eral strengths. First, the decomposition rules very naturally represent the manner in which
the analysts attack the procedure generation problem. Thus, it was a relatively straightfor-
ward process for the analysts to articulate and accept classi�cation and decomposition rules
for the subareas which we have implemented thus far. Second, the notes from the decom-
position rules used to decompose the problem can be used to annotate the resulting plan to
make the output plans more understandable to the analysts. Third, relatively few problem
decomposition rules are easily able to cover a wide range of problems and decompose them
into much smaller subproblems.

2.2 Operator-based Planning in MVP

MVP represents lower level procedural information in terms of classical planning operators.
These are typical classical planning operators with preconditions, e�ects, conditional e�ects,
universal and existential quanti�cation allowed, and with codesignation constraints allowed
to appear in operator preconditions and e�ect conditional preconditions. For reasons of
space constraints the operator representation is only briey described here. (for a good
description of a classical planning operator representation similar to ours see (Pemberthy
and Weld 1992)). Thus, an operator has a list of parameter variables, a conjunctive set
of preconditions, and for each e�ect (which is a conjunct) there is a (possibly null) set of
preconditions.

Operator
Parameters: variable*
Preconditions: Prec = Prop*
E�ects: [E�ecti = Prop* when Cpreci = Prop*]*

The above operator has the semantics that it can only be executed in a state in which all
of the preconditions Prec are true. And when executed, for each e�ect set, if all of the
conditional preconditions Cpreci are true in the input state, the e�ect E�ecti occurs and all
of the e�ects are true in the output state.

A description of the GALSOS operator is shown below.

operator GALSOS
:parameters ?in�le ?ubwc ?calc
:preconditions

the project of ?in�le must be galileo
the data in ?in�le must be raw data values

:e�ects
reseaus are not intact for ?in�le
the data in ?in�le is not raw data values
missing lines are not �lled in for ?in�le
?in�le is radiometrically corrected
the image format for ?in�le is halfword
?in�le has blemishes-removed
if (UBWC option selected) then ?in�le is uneven bit wt. corrected
if (CALC option selected) then ?in�le has entropy values calculated

2.3 An Overall Approach to Knowledge Acquisition, Validation,

and Re�nement for MVP

During development of the MVP knowledge base, we used an iterative re�nement model in
building the knowledge base. We began by eliciting representative problem classes and used
these to direct the knowledge elicitation - both in terms of problem classes for the HTN
rules and in terms of the causal structure underlying the operators. Concurrent with the
development of this knowledge base, we attempted to elicit from expert analysts, declar-
ative descriptions of the coverage of each of these problem classes - in terms of the legal
combinations of goals and of initial states allowable.

When this knowledge base was relatively stable, it was tested against a holdback set
of problems not used during the original elicitation process. This led to another round of
re�nement of the knowledge base and problem class descriptions.

In the operational version of MVP, this de�nition of legal problem classes is key. Before
any problem is submitted to the planner from the interface, it is �rst checked against these
problem class constraints. In the event that the submitted request does not pass the con-
straints, it is not submitted to the planner - rather the user is noti�ed that the problem is
not considered a valid request. If the user believes otherwise, they can submit a bug report
at this time.

If the problem is considered a valid one, then if the planner is correct and sound, then the
planner and knowledge base should be able to solve the problem correctly. While the MVP
planner is not complete (it cannot backtrack across di�erent decompositions in response to
failures in operator-based planning), in actual usage, we have not yet encountered a problem
in which this was the cause of a planner failure. Consequently, when the planner (and KB)
are unable to solve a problem (e.g., the planner cannot �nd a solution either due to dead-ends
in the search space or exceeding resource bounds), a KB bug is assumed and a bug report
is automatically submitted. This bug report includes the requested goals, initial state, and
image �les are logged. Similarly, if the planner generates an incorrect plan, a bug report can
be �led (manually) by the user. Figure 1 below graphically illustrates the acquisition and
maintenance ows as described.

2.4 Di�erent Tool Types and Representations

In order to facilitate this key process of knowledge acquisition and re�nement we have been
developing a set of knowledge-base editing and analysis tools. These tools can be categorized

Development Operations

Initial KB

Cases

Verification

Holdback Cases

Release

Test

Refined KB
Constraints

Request

Constraint Check

Manual Bug report
(valid request not
allowed)

Planner

Automatic
Bug Report
(Planner
 Fails -
email log)

valid PDF

Figure 1: Initial Acquisition and Maintenance Processes for MVP Planning Knowledge Base

into two general types: (1) static knowledge base analysis tools; and (2) completion analysis
tools. Because MVP uses two types of knowledge: decomposition rules and operator de�-
nitions, each of these tools can be used with each of these representations. Thus there are
four types of tools:

� static rule analysis tools;

� static operator analysis tools;

� completion rule analysis tools; and

� completion operator analysis tools.

For each type of tool, it is possible to perform the analysis using propositional or full predicate
checking. In propositional analysis, all actions and goals are considered optimistically only
for the predicate or goal name. For example, when considering whether an operator could
achieve a speci�c fact, "(radiometrically-corrected ?�le1)", optimistic treatment means that
any e�ect or initial state fact with the predicate "radiometrically-corrected" can be used.
When considering whether an e�ect , "(radiometrically-corrected ?�le1)", deletes a protected
fact "(radiometrically-corrected ?�le2)", one presumes that the arguments to the predicate
can be resolved such that the conict does not occur. Therefore the e�ect is not considered
to delete the fact. The propositional analysis is used as a fast checking component to
catch simple errors when debugging a knowledge base. The full static analysis is useful but
restricted to more batch-like analysis due to its computational expense.

2.5 Problem Spaces for Knowledge Analysis

In our knowledge base development and re�nement framework, the knowledge base is divided
into a set of problem spaces. A problem space consists of a set of allowable sets of inputs
and groundings. In the case of task reduction, conceptually the planner is reducing a set of
abstract activities into more speci�c activities (although sometimes these speci�c activities
can be mapped . Hence, in task reduction, the inputs are non-operational goals, groundings
are operational goals, and the problem space corresponds to a class of non-operational goal

Figure 2: Problem Space Information
Problem Space # operators goals typ. search
local correction 15 7 60
automatic navigation 20 4 150
manual navigation 24 4 300
photometric correction 5 2 60
registration 13 5 110
mosaicking 4 3 325
touch ups 10 3 325

sets which can be reduced into operational goals. In the case of operator-based planning, the
planner is considering which how to achieve goal state requirements using a particular set
of actions from certain initial states. In this case the problem space corresponds to a class
of goal states which can be achieved from a general class of initial states. In both the task
reduction and operator-based cases, the inputs are speci�ed in terms of logical constraints
over goals and groundings are speci�ed in terms of a list of predicates which can be presumed
true/operational.

These problem spaces represent a set of contexts in which the decomposition planner
or operator planner is attempting to solve a general class of problems. Decomposing the
overall problem solving process into these problem spaces and analyzing each in isolation
dramatically reduces the complexity of the analysis process. Of course, this introduces the
possibility that the knowledge base analysis is awed due to a poor problem decomposition.
Unfortunately, we know of no other way around this problem. While the tools we describe
are of assistance in analyzing the impact of the problem space structure they do not directly
assist in the de�nition of the problem spaces - which is a direct burden on the user.

Within a single problem space only one of the HTN and operator-based planner is being
used. Hence in this case the system performing the analysis is complete and correct so that
inability to solve a problem is interpreted as a aw in the knowledge base.

Below in Figure 2 we list the problem spaces used in the current MVP knowledge base.
For each problem space we describe the number of relevant planning operators, the number
of top-level input goals, and the typical number of plans searched in the problem space.

3 Static Analysis Tools

3.1 Static Analysis Tools for Task Reduction Rules

Static analysis tools analyze the knowledge base to determine if pre-speci�ed problem-classes
are solvable. The static analysis techniques can be used in two ways: 1. fast run-time
checking using propositional analysis (called propositional static rule analysis); and 2. o�-
line knowledge-base analysis to verify domain coverage (called full static rule analysis).

In the case of static rule analysis, the analysis process is to verify that all legal sets of
input goals can be reduced into operational goals/facts/tasks. The set of allowable input
goals is formally speci�ed in terms of logical constraints on a set of goals produced by the
interface. Figure 3 describes the static rule analysis algorithm. Below we show a simpli�ed
problem space description for the navigation problem space, and use this to illustrate static

Table 1: Propositional vs. Full Constraint Handling
Constraint type Propositional Case Full Case

codesignation ignored tracked

not-present ignored tracked

present propositional tracked

ordering tracked tracked

protection ignored tracked

rule analysis.
Input goals are all combinations of:

(attempt-to-FARENC ?�les) (automatch ?�les)
(manmatch ?�les) (curve-verify ?�les)
(display-automatch-residual-error ?�les) (display-manmatch-residual-error ?�les)
(update-archival-sedr ?�les)

Subject to the constraint that:

:((attempt-to-FARENC ?�les ?�les) and (automatch ?�les))

:(curve-verify ?�les) or (attempt-to-FARENC ?�les)

:(display-automatch-residual-error ?�les) or (automatch ?�les)

:(display-manmatch-residual-error ?�les) or (manmatch ?�les)

Generally, the allowable sets of input goals are of the form "all combinations of these 5
goals except that goal4 and goal3 are incompatible, and that every time goal 2 is selected
goal 1 must have parameter X and so on.

The output legal set of goals/facts/tasks are de�ned in terms of a set of operational
predicates. For example, in the relative navigation example used above has the operational
predicates: construct-om-matrix, and display-om-error.

This means that any goal/activity/fact produced using one of these predicates is con-
sidered achieved. Static rule analysis runs the rules on these allowable combinations and
veri�es that the decomposition rules cover the combinations (this corresponds to exhaustive
testing of the task reduction rules). As described in Section 2.1, there are several types of
constraints used in the task reduction rules. Some of these constraints do not make sense for
a propositional analysis; how constraints are handled in the propositional analysis is shown
below.

The principal di�erence between the propositional and non-propositional cases is that
when predicates are transformed to the propositional case, constraint resolution optimisti-
cally presumes variable assignments will remove conicts. For example, consider the plan
and reduction rules shown below.

Plan1: activities: (foo c216) (bar c216) constraints:

StaticRuleAnalyze(input-goals, operational-goals, rules)
initialize Q = (goals=input-goals, constraints=fg)
select a plan P from Q

for each plan P' produced by reducing a goal in P using a
task reduction rule w. constraints as below
IF P' contains only operational goals return SUCCESS
ELSE add P' to Q and continue

Figure 3: Static Rule Analysis Algorithm

Plan2: activities: (foo c216) (bar c211) constraints:

Reduction Rule1: if present: (bar ?a) not-present: (foo ?b)
Reduction Rule2: if present: (bar ?a) (foo ?a)

In the propositional case, both rule1 and rule2 apply to both plan1 and plan2. In the
full case, rule 1 does not apply either plan1 or plan2. In the full case rule2 applies to plan1
but does not apply to plan2. Note that in the propositional case, in order to presume that
variables resolve optimistically, the analysis procedure need not compute all possible bind-
ings. Rather, the analysis procedure resolves present constraints by presuming matching
if the predicate matches and by ignoring not- present constraints (and others as indicated
above). To further illustrate, consider the following example from the MVP domain. The
input goals, relevant decomposition rules, and operational predicates are shown below.

Input Goals: (automatch ?�les) (manmatch ?�les) (display-manmatch-error ?�les)

Decomposition Rules:

Rule1 LHS (automatch ?f1) (manmatch ?f1)

RHS (construct-om-matrix ?f1 auto-man-re�ned)

Rule2 LHS (display-manmatch-error ?f2) present (automatch ?f2) (manmatch ?f2)

RHS (display-om-error ?f2 auto-man-re�ned)

Operational Predicates: construct-om-matrix, display-om- error

In both the propositional and full static rule analysis cases both rules would apply in the
analysis. Thus, both analyses would indicate that the input goals can be reduced into oper-
ational facts/activities.

3.2 Static Analysis Tools for Operator-based Planning

The static analysis techniques can also be applied to the MVP's operator-based planner
component. This is accomplished by generalizing the planning algorithm. Again, as with
the static rule analysis, the static operator analysis is considering a general class of problems
de�ned by a problem space. As with the static rule analysis, a problem space de�nes an
allowable set of goals and a set of operational predicates which are assumed true in the initial

state.
In the propositional static operator analysis case, in order to treat the domain theory

optimistically, we must assume that all protection interactions can be resolved by variable
assignments. Because of the absence of protection constraints, the propositional operator
static analysis corresponds to the propositional rule-based static analysis. An operator with
preconditions P and e�ects E maps onto a rule with LHS P and RHS E. Conditional e�ects
extend analogously.

The non-propositional static analysis case is handled by modifying a standard operator-
based planner. The planner is changed by adding an achievement operation corresponding
to presuming any operational fact is true in the initial state. We are currently investigating
using more sophisticated static analysis techniques to detect more subtle cases where goals
are unachievable (Etzioni, 1993, Ryu and Irani, 1992). The full (e.g. non-propositional)
operator static analysis algorithm is shown below in Figure 4. The * on Step 3 indicates
that this is the key modi�cation to a standard operator-based planning algorithm to perform
static operator analysis.

StaticOperatorAnalyzeFull(input, operational, operators)
initialize plan queue Q to (goals=input, constraints=fg)
select a plan P from Q

for each plan P' produced by achieving a goal G using the following methods:
1. use an existing operator in the plan to achieve G
2. add a new operator to the plan to achieve G
3.* if the goal is operational assume it true in the initial state

resolve conicts in P' (protections)
IF P' has no unresolved conicts and no unachieved goals
THEN return SUCCESS
ELSE add P' to Q and continue

Figure 4: Static Operator Analysis Algorithm

Figure 5 shows the subgoal tree generated by performing full static analysis on the op-
erator planner problem space de�ned by: Input Goals: (compute-om-matrix ? manmatch)
(update-archival-sedr ? manmatch) and Operational Predicates: project, initial-predict-
source.

4 Completion Analysis Tools

The second type of knowledge base development tool used in MVP is the completion anal-
ysis tool. In many cases, a knowledge engineer will construct a domain speci�cation for a
particular VICAR problem, test it out on known �les and goal combinations. Two possible
outcomes will occur. First, it is possible that the domain speci�cation will produce an invalid
solution. Second, it is possible that the planner will be unable to construct a solution for a
problem that the expert believes is solvable.

compute-om-matrix

tiepoint-file project mosaic-file-list

MMM AAA NNN MMM AAA TTT CCC HHH

OOO MMM CCC OOO RRR 222

mosaic-file-list
project

refined-overlap-pairs

CCC OOO NNN SSS TTT RRR UUU CCC TTT MMM OOO SSS AAA III CCC FFF III LLL EEE LLL III SSS TTT

EEE DDD III BBB III SSS

crude-overlap-pairs

MMM OOO SSS PPP LLL OOO TTT --- ccc ooo nnn sss ttt rrr uuu ccc ttt --- ccc rrr uuu ddd eee

default-nav

III BBB III SSS NNN AAA VVV

project

initial predict source
mosaic-file-list

update-archival-SEDR

mosaic-file-list target

GGG LLL LLL ___ LLL LLL

GGG LLL LLL CCC AAA MMM PPP AAA RRR

project

latlon

SSSHHHAAADDDOOOWWWEEEDDD = operator
underlined = top-level goal
italics = initial state satisfied condition
normal = operator precondition satisfied by effect
lines are drawn from operator preconditions to operators to effects

effect

ooopppeee rrr aaa ttt ooo rrr

precondition

Figure 5: Subgoal Graph Indicating Static Operator Analysis for Navigation Goals

In the case that the planner constructs an invalid solution, the knowledge engineer can
use the inconsistent part of the solution to indicate the awed portion of the domain theory.
For example, suppose that the planner produces a plan consisting of steps ABCD, but the
expert believes that the correct plan consists of steps ABCSD. In this case the knowledge
engineer can focus on the underlying reason that S is necessary. S must have had some
purpose in the plan. It may be needed to achieve a top-level goal G or a precondition P of
A, B, or C. Alternatively, if the ordering of operators or variable assignments is not valid in
the produced plan, the knowledge engineer can focus on the protection or other constraint
which should have been enforced.

The second possibility is that the domain speci�cation fails to allow the desired solution.
For example, the expert believes that the plan ABCD should achieve the goals, but the
planner fails to �nd any plan to achieve the goals. In this case, detecting the awed part of
the knowledge base is more di�cult, because it is di�cult to determine which part of the
domain speci�cation caused the desired output plan to fail. In manually debugging these
types of problems, the knowledge engineer would write out by hand the plan that should be
constructed. The knowledge engineer would then construct a set of problems, each of which
corresponded to a subpart of the failed complete problem. For example, if a failed problem
consisted of achieving goals A, B, and C, the knowledge engineer might try the planner on
A alone, B alone, and C alone, to attempt to isolate the bug to the portion of the knowledge
base corresponding to A, B, or C, correspondingly.

Completion analysis tools partially automate this tedious process of isolating the bug
by constructing subproblems. The completion analysis tools allow the decomposition or
operator-based planner 5 to construct a proof with assumptions that a small number of goals
or subgoals can be presumed achievable (typically only one or two)6. By seeing which goals,

5In the completion analysis for both the reduction planner and the operator-based planner there are
choice points in the search in ordering plans in the search queue. In both cases, we use standard heuristics
based on the number of outstanding goals and plan derivation steps so far. However, the static analysis
techniques would work with any appropriate heuristic for this search choice.

6The number of goals assumable is kept small because allowing the planner to assume goals dramatically
increases the search space for possible plans. It e�ectively adds 1 to the branching factor of every goal
achievement node in the search space for the plan

if assumable, make the problem solvable, the user gains valuable information about where
the bug lies in the knowledge base. For example, if a problem consists of goals A, B, and
C, and the problem becomes solvable if B is assumed achievable, the bug is likely to be in
the portion of the knowledge base relating to the achievement of B. Alternatively, if the
problem is solvable when either B or C is assumed achievable, then the bug likely lies in
the interaction of the operators achieving B and C. The completion analysis tool is used by
running the modi�ed planner algorithm until either: 1. a resource bound of the number of
plans expanded is reached; or 2. there are no more plans to expand. The completion analysis
algorithm for the reduction planner is shown below in Figure 6 .

CompletionReductionPlanner (input, operational, rules)
initialize Q = (goals=input, constraints=, assumptions=0)
IF resource bound return SOLUTIONS
ELSE select a plan P from Q

for each plan P' produced by reducing P using a task reduction rule
IF the constraints in P' are consistent

IF P' contains only operation goals/activities
THEN add P' to SOLUTIONS
ELSE add P' to Q and continue

ELSE discard P'
for each plan P' produced by presuming the current goal achieved/operational
IF P' contains only operation goals/activities

THEN add P' to SOLUTIONS
ELSE increment NumberOfAssumptions(P')

IF NumberOfAssumptions(P') � bound
THEN add P' to Q

Figure 6: Completion Analysis for Reduction Rules

In the operator-based planner, completion analysis is permitted by adding another goal
achievement method which corresponds to assuming that the goal is magically achieved.
The completion analysis operator planner is then run until either 1. a resource bound of
the number of plans expanded is reached; or 2. there are no more plans to expand. All
solutions found are then reported back to the user to assist in focusing on possible areas of
the domain theory for re�nement. The basic completion analysis algorithm for the operator
planner is shown below in Figure 7. The * on Step 4 indicates the principal modi�cation to
the standard operator-based planning algorithm made to perform operator-based completion
analysis. The main drawback of the completion analysis tools is that they dramatically
increase the size of the search space. Thus, with the completion analysis tools, we provide
the user with the option of restricting the types of goals that can be presumed true. Currently
the user can restrict this process in the following ways:

� allow only top-level (problem input) goals to be assumed;

� allow only goals appearing in a speci�c operators preconditions to be assumed;

CompletionOperatorPlanner(input, initial-state, operators)
initialize Q = (goals=input, constraints=, assumptions=0)
IF resource bound exceeded

THEN return SOLUTIONS
ELSE select a plan P from Q

for each plan P' produced by achieving a goal using the following methods:
1. use existing operator in the plan to achieve the goal
2. add a new operator to the plan to achieve the goal
3. use the initial state to achieve the goal
4.* if the number of goals already assumed in P is less than the bound

assume the goal true using completion analysis;
the # of assumptions in the new plan is 1+ # in P;
resolve conicts in P' (protections);

IF P' has no unresolved conicts and has no unachieved goals
THEN add P' to SOLUTIONS
ELSE add P' to Q and continue

Figure 7: Completion Analysis for Operator Planner

� allow goals relating to an operator (appearing in its precondition or e�ects) to be
assumed; and

� only allow certain predicates to be assumed.

Thus far, we have found these restriction methods to be fairly e�ective in focusing the
search. Note that allowing certain goals to be presumed true corresponds to editing the
problem de�nition (or domain theory) numerous times and re-running the planner. For
example, allowing a single top-level goal to be assumed true for a problem with N goals
corresponds to editing the problem de�nition n times, each time removing one of the top-
level goals and re-running the planner each time. Allowing a precondition of an operator to be
suspended corresponds to running the planner on the original problem multiple times, each
time with a domain theory that has one of the operator preconditions removed. Manually
performing this testing to isolate an error quickly grows tiresome. Furthermore, if multiple
goals are allowed to be suspended, the number of edits and runs grows combinatorially. The
completion analysis tools are designed to alleviate this tedious process and to allow the user
to focus on repairing the domain theory. As a side e�ect, running the planner only once is
also computationally more e�cient than running the planner multiple times. This is because
the planner need explore portions of the search space unrelated to the suspended conditions
fewer times.

Thus, the completion analysis techniques are generally used in the following manner.
MVP automatically logs any problems unsolvable by the task reduction planner (unredu-
cable) or operator-based planner (no plan found). The user then speci�es that one of the
top-level goals may be suspended (any one of the top-level goals is a valid candidate - the
planner tries each in turn. The completion planner then �nds a plan which solves all but

one of the top-level goals - focusing the user on the top-level goal which is unachievable.
The user then determines which operator O1 that should be achieving the goal, and speci�es
that the completion planner may consider suspending preconditions of O1. The completion
analysis planner runs and determines which precondition P1 of O1 is preventing application
of this operator. Next, the user determines which operator O2 should be achieving this pre-
condition P1 of O1, and the process continues recursively until the awed operator is found.
For example, it may be that a protection cannot be enforced, thus preventing a precondition
P1 from being achieved. In this case, suppose another operator O2 should be able to achieve
P1. But suspending its preconditions does not allow the problem to be solved. This might
hint to the knowledge engineer that the problem is in the protection of P1 from O2 to O1.
Alternatively, it may be that no operator has an e�ect that can achieve P (perhaps the
knowledge engineer forgot to de�ne the e�ect or operator). Or that the e�ect has a di�erent
number of arguments, or arguments in a di�erent order, or arguments of a di�erent type.
These types of bugs can be easily detected once the bug has been isolated to the particular
operator. Another possibility is that a conditional e�ect that should be used has the wrong
conditional preconditions. Again, once the bug has been traced to a particular operator, the
debugging process is greatly simpli�ed.

In order to further explain how the completion analysis tools are used, we now describe a
detailed example of how the completion analysis tools are used. The graph below in Figure 8
illustrates this process from an actual debugging episode which occurred in the development
of a portion of the planning knowledge base 7 relating to a problem called relative navigation
8. Each of the following steps in the debugging process is labeled P if the planner performed
the step; U if the user/knowledge engineer performs the step; or C if the completion analysis
tool performs the step.

1. (P) The planner is unable to solve the original problem.
2. (U) The user initiates the debugging process by invoking the operator-based completion analysis tool

specifying that one top-level goal may be suspended.
3. (C) The completion planner constructs a plan achieving all of the goals but the top-level goal of

(compute-om- matrix ?om-matrix ?�le-list ?�le-list).
4. (U) The user then determines that the OMCOR2 operator should have been able to achieve the

goal (compute-om-matrix ?om-matrix ?�le-list ?�le-list). The user then continues the debugging process
by invoking the completion analysis tool specifying that a precondition of the OMCOR2 operator may be
suspended.

5. (C) In response to the user request, the completion planner �nds a plan achieving all goals except
the OMCOR2 precondition (tiepoint-�le ?tp ?�le-list manmatch).

6. (U) The user then determines that the precondition (tiepoint-�le ?tp ?�le-list manmatch) should
be achieved by the MANMATCH operator, and invokes the operator completion analysis tool allowing
suspension of one of the preconditions of the MANMATCH operator.

7. (C) The completion planner then �nds a plan achieving all goals but the precondition (re�ned-overlap-
pairs ?rop- �le ?�le-list) of the operator MANMATCH.

7Note that this is the operator portion of the knowledge base relating directly to the task reduction rules
shown in the example for static rule analysis.

8For the interested reader, navigation of the image is the process of determining the appropriate transfor-
mation matrix to map each pixel from the 2-dimensional (line, sample) of the image space to a 3-dimensional
(x,y,z) of some coordinate object space (usually based on the planet center of the target being imaged). Rel-
ative navigation corresponds to the process when determining the absolute position of each point is di�cult
to compute so that the process focuses on determining the correct positions of each point relative to other
points in related images.

8. (U) The user then determines that the precondition (re�ned-overlap-pairs ?rop-�le ?�le-list) should
have been achieved by the EDIBIS operator and invokes the operator completion analysis tool allowing
suspension of an EDIBIS precondition.

9. (C) The completion planner �nds a plan achieving all goals but the precondition (crude-overlap-pair
?cop-�le ?�le-list) of EDIBIS.

10. (U) The user then determines that this precondition (crude-overlap-pair ?cop-�le ?�le-list) should
have been achieved by the MOSPLOT-construct-crude-nav-�le. This results in another invocation of the
completion analysis tool allowing suspension of a precondition for MOSPLOT-construct-crude-nav-�le.

11. (C) The completion analysis tool then �nds a plan achieving all goals but the precondition (latlon
?mf ?lat ?lon) for the operator MOSPLOT-construct-crude-nav-�le.

12. (U) At this point, the user notices that the constructed plan for achieving the goals has assumed the
instantiated goal (latlon &middle-�le ?lat ?lon). This immediately indicates the error to the user because
the user is expecting a �le name as the second argument of the latlon predicate 9.

compute-om-matrix

tiepoint-file project mosaic-file-list

MMM AAA NNN MMM AAA TTT CCC HHH

OOO MMM CCC OOO RRR 222

mosaic-file-list
project

refined-overlap-pairs

CCC OOO NNN SSS TTT RRR UUU CCC TTT MMM OOO SSS AAA III CCC FFF III LLL EEE LLL III SSS TTT

EEE DDD III BBB III SSS

crude-overlap-pairs

MMM OOO SSS PPP LLL OOO TTT --- ccc ooo nnn sss ttt rrr uuu ccc ttt --- ccc rrr uuu ddd eee

default-nav

III BBB III SSS NNN AAA VVV

project

initial predict source
mosaic-file-list

update-archival-SEDR

mosaic-file-list target

GGG LLL LLL ___ LLL LLL

GGG LLL LLL CCC AAA MMM PPP AAA RRR

project

latlon

SSSHHHAAADDDOOOWWWEEEDDD = operator
underlined = top-level goal
italics = initial state satisfied condition
normal = operator precondition satisfied by effect
lines are drawn from operator preconditions to operators to effects

effect

ooopppeee rrr aaa ttt ooo rrr

precondition

1. suspend top-level goal
2. suspend OMCOR2 preconditions
3. suspend MANMATCH preconditions
4. suspend EDIBIS preconditions
5. suspend MOSPLOT... preconditions

Figure 8: Subgoal Graph for Completion Analysis Debugging

Unfortunately, we have as of yet not been able to determine any heuristics for control-
ling the use of these completion tools that allows for more global search or allows for less
user interaction. However, in their current form, the completion analysis tools have proved
quite useful in debugging the MVP radiometric correction and color triplet reconstruction
knowledge base.

4.1 Impact of Debugging

In order to quantify the usefulness of the completion analysis tools, we collected data from a
1 week phase of domain theory development for the relative navigation portion of the domain
theory. During this week, we identi�ed 22 issues raised by a domain expert analyst which at

9This is because the latlon goal is designed to refer to a speci�c image �le (e.g., 1126.IMG). Correspond-
ingly, the planning operators that had been de�ned to acquire information such as latlon presumed actual
�le names. Unfortunately, &middle-�le refers to a VICAR variable which will be bound to an actual �le
name only at the time that the VICAR script is run (i.e. when the plan is executed). Thus, the bug lies
in the mismatch between this precondition and the operators which can determine latlon information for a
�le. This bug was then �xed by de�ning operators which could utilize the VICAR variable information at
runtime and perform the correct steps to compute the needed latlon information.

Table 2: Empirical Impact of Completion Analysis Tools
Set Tools Average Tools Average Overall Average

Applicable Time Not Applicable Time
Tool 7/11 10 min. 4/11 41 min. 21 min.
No Tool 6/11 43 min. 5/11 40 min. 42 min.

�rst guess appeared to be primarily in the decomposition rules or operators. For 11 of these
22 problems (selected randomly) we used the debugging tools in re�ning the domain theory.
For the other 11 problems we did not use the debugging tools. When tools were allowed, we
estimated that the tools were applicable in 7 out of the 11 problems. These 7 problems were
solved in an average of 10 minutes each. The other 4 took on average 41 minutes. The total
11 problems where the tools were used took on average 21 minutes each to correct. In the
11 problems solved without use of the tools, after �xing all 11 problems, we estimated that
in 6 out of the 11 problems that the debugging tools would have helped. These 6 problems
took on average 43 minutes each to solve. The remaining 5 problems took on average 40
minutes to solve. The second set of 11 problems took on average 42 minutes to solve.

5 Discussion

One area for future work is development of explanation facilities to allow the user to intro-
spect into the planning process. Such a capability would allow the user to ask such questions
as "Why was this operator added to the plan?" and "Why is this operator ordered after this
operator?", which can be answered easily from the plan dependency structure. More dif-
�cult (but also very useful) questions are of the form "Why wasn't operator O2 used to
achieve this goal?" or "Why wasn't this problem classi�ed as problem class P?". We are
currently investigating using completion analysis tools to answer this type of question. The
completion analysis techniques are related to theory re�nement techniques from machine
learning (Mooney and Ourston, 1994, Ginsberg et. al., 1988). However, these techniques
presume multiple examples over which to induce errors. Additionally, reasoning about plan-
ning operators requires reasoning about the specialized planning knowledge representations
and constraints. This paper has described two classes of knowledge base development tools.
Static analysis tools allow for e�cient detection of certain classes of unachievable goals and
can quickly focus user attention on the unachievable goals. Static analysis techniques can
also be used to verify that domain coverage is achieved. Completion analysis tools allow the
user to quickly focus on which goals (or subgoals) are preventing the planner from achieving
a goal set believed achievable by the knowledge base developer. These tools are currently in
use and we have presented empirical evidence documenting the usefulness of these tools in
constructing, maintaining, and verifying the MVP planning knowledge base.

Acknowledgements

This work was performed by the Jet Propulsion Laboratory, California Institute of Technol-
ogy, under contract with the National Aeronautics and Space Administration. The author
would also like to acknowledge the contributions of other past and present members of the
MVP team: Helen Mortensen, Forest Fisher, Todd Turco, Christine Ying, Shouyi Hsiao,
Darren Mutz, Alex Gray, Joe Nieten, and Jean Lorre.

References

(Chien, 1994a) Chien, S., Using AI Planning Techniques to Automatically Generate Image
Processing Procedures: A Preliminary Report. Proceedings of the Second International
Conference on AI Planning Systems, Chicago, IL, June 1994, pp. 219-224.

(Chien, 1994b) Chien, S., Automated Synthesis of Complex Image Processing Procedures
for a Large-scale Image Database. Proceedings of the First IEEE International Conference
on Image Processing, Austin, TX, Nov 1994, Vol 3, pp. 796-800.

(Chien and Mortensen, 1996) Chien, S., Mortensen, H. Automating Image Processing for
Scienti�c Data Analysis of a Large Image Database. IEEE Transactions on Pattern Analysis
and Machine Intelligence, (18) 8 pp. 854-859 August 1996.

(Chien et. al. in preparation) Chien, S., Estlin, T., Wang, X., Govindjee, A., Hill, R.,
Automated Generation of Antenna Operations Procedures: A Knowledge-based Approach.
Submitted to Telecommunications and Data Acquisition.

(Chien et. al., 1996) Chien, S., Estlin, T., Wang, X., Hierarchical Task Network and
Operator-based Planning: Competing or Complementary. JPL Technical Document D-13390
Jet Propulsion Laboratory, California Institute of Technology, January 1996.

(Davis, 1979) Davis, R., Interactive Transfer of Expertise: Acquisition of New Inference
Rules. Arti�cial Intelligence 12 (2) 1979, pp. 121-157.

(DesJardins, 1994) DesJardins, M., Knowledge Development Methods for Planning Sys-
tems. Working Notes of the AAAI Fall Symposium on Learning and Planning: On to Real
Applications, New Orleans, LA, Nov 1994, pp. 34-40.

(Etzioni, 1993) Etzioni, O., Acquiring Search Control Knowledge via Static Analysis.
Arti�cial Intelligence, 62 (2) 255-302, 1993.

(Gil and Tallis 1995) Gil, Y., Tallis, M., Transaction- based Knowledge Acquisition:
Complex Modi�cations Made Easier. Proceedings of the Ninth Knowledge Acquisition for
Knowledge-based Systems Workshop, 1995.

(Ginsberg et. al. 1988) Ginsberg, A., Weiss, S., Politakis, P., Automatic Knowledge
Based Re�nement for Classi�cation Systems. Arti�cial Intelligence, 35 pp. 197-226, 1988.

(Iwasaki and Friedland, 1985) Iwasaki, Y., Friedland, P., The Concept and Implementa-
tion of Skeletal Plans. Automated Reasoning 1, 1 (1985), pp. 161-208.

(Lansky, 1993) Lansky, A., Localized Planning with Diverse Plan Construction Methods.
TR FIA-93-17, NASA Ames Research Center, June 1993.

(Lavoie et al. 1989) LaVoie, S., Alexander, D., Avis, C., Mortensen, H., Stanley, C.,
Wainio, L., VICAR User's Guide, Version 2, JPL Internal Doc.D-4186, Jet Propulsion Lab-
oratory, California Inst. of Tech., Pasadena, CA, 1989.

(O'Keefe and O'Leary, 1993) O'Keefe, R., O'Leary, D., Expert System Veri�cation and
Validation: A Survey and Tutorial. AI Review, 7:3-42, 1993.

(Mooney and Ourston, 1994) Mooney, R., Ourston, D., A Multistrategy Approach to
Theory Re�nement. in Machine Learning: A Multistrategy Approach, Vol. IV, R.S. Michal-
ski and G. Teccuci (eds.), pp.141{164, Morgan Kaufman, San Mateo,CA, 1994.

(Pemberthy and Weld 1992) Pemberthy, J., Weld, D., UCPOP: A Sound Complete, Par-
tial Order Planner for ADL. Proceedings of the Third International Conference on Knowledge
Representation and Reasoning, October 1992, pp. 103-114.

(Ryu and Irani, 1992) Ryu, K., Irani, K., Learning from Goal Interactions in Planning:
Goal Stack Analysis and Generalization. Proceedings of the 1992 National Conference on
Arti�cial Intelligence (AAAI92), pp. 401-407.

(Ste�k, 1981) Ste�k, M., Planning with Constraints (MOLGEN: Part 1). Arti�cial In-
telligence 16, 2(1981), pp. 111-140.

(Wang, 1995) Wang, X., Learning by observation and practice: An incremental approach
for planning operator acquisition. In the Proceedings of the 1995 International Conference
on Machine Learning (ML95).

